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1 Introduction

• Let (Ω,F ,F,P) be a complete filtered probability space with
F = {Ft}t≥0, on which a one-dimensional standard Brown-
ian motion {W (t)}t≥0 is defined so that F = {Ft}t≥0 is the
natural filtration of {W (t)}t≥0.

• We define

U [0,T ]
4
=
{
u : [0,T ]× Ω→ U

∣∣ u is F-adapted
}
.
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• We consider the following stochastic controlled system:{
dx(t)=b(t, x(t), u(t))dt+σ(t, x(t), u(t))dW (t), t∈ [0,T ],

x(0) = x0,
(1)

with the cost functional

J (u(·)) = E
{∫ T

0

f (t, x(t), u(t))dt + h(x(T ))
}
.

for suitable b, σ, f and h.

• Problem (S). Minimize J (·) over U [0,T ].

• Any u(·) ∈ U [0,T ] satisfying

J(u(·)) = inf
u(·)∈U [0,T ]

J(u(·)),

is called an optimal control, the corresponding x(·) ≡ x(· ; u(·)) and

(x(·), u(·)) are called an optimal state process/trajectory and an op-

timal pair, respectively.
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• To establish a Pontryagin type maximum principle (a necessary
condition for the optimal pair) for the above optimal control
problem, J. Bismut introduce backward stochastic differential
equation in 1970’s.

• A systematic solution is given by E. Pardoux and S. Peng in
1990, and a general maximum principle was given by S. Peng
in 1990.
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• Fix any u(·) ∈ U [0,T ] and ε > 0. Define

uε(t) =

{
u(t), t ∈ [0,T ] \ Eε,

u(t), t ∈ Eε,

where Eε ⊆ [0,T ] is a measurable set with |Eε| = ε.

• Let (xε(·), uε(·)) satisfy the following:{
dxε(t)=b(t, xε(t),uε(t))dt+σ(t, xε(t),uε(t))dW (t), t∈[0,T ],
xε(0) = x0.
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• One can show that

J (uε(·))− J (u(·))

= E
〈
hx(x(T )), y ε(T )+zε(T )

〉
+

1

2
E
〈
hxx(x(T ))y ε(T ), y ε(T )

〉
+E

∫ T

0

{〈
fx(t), y ε(t) + zε(t)

〉
+

1

2

〈
fxx(t)y ε(t), y ε(t)

〉
+δf (t)χEε(t)

}
dt + o(ε).
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• y ε(·) solves:
dy ε(t)=bx(t)y ε(t)dt+

{
σx(t)y ε(t)+δσ(t)χEε(t)

}
dW (t),

t ∈ [0,T ],

y ε(0) = 0.

• zε(·) solves:

dzε(t) =
{
bx(t)zε(t) + δb(t)χEε(t) +

1

2
y ε(t)bxx(t)y ε(t)

}
dt

+
{
σx(t)zε(t) + δσx(t)y ε(t)χEε(t)

+
1

2
y ε(t)σxx(t)y ε(t)

}
dW (t), t ∈ [0,T ],

zε(0) = 0.
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• We should get rid of y ε(·) and zε(·) in the Taylor’s expansion
of J(uε(·)). In this case, we have to introduce two equations.

• 
dp(t) = −

{
bx(t, x(t), u(t))∗p(t) + σx(t, x(t), u(t))∗q(t)

−fx(t, x(t), u(t))
}
dt + q(t)dW (t), t ∈ [0,T ],

p(T ) = −hx(x(T )).
(2)
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• One has to introduce another variable to reflect the uncertainty in the

system. This is done by introducing an additional adjoint equation

as follows:

dP(t) = −
{
bx(t, x(t), u(t))>P(t) + P(t)bx(t, x(t), u(t))

+σx(t, x(t), u(t))>P(t)σx(t, x(t), u(t))

+σx(t, x(t), u(t))>Q(t) + Q(t)σx(t, x(t), u(t))

+Hxx(t, x(t), u(t), p(t), q(t))
}
dt + Q(t)dW (t),

P(T ) = −hxx(x(T )),

(3)

• Here the Hamiltonian H is defined by

H(t, x , u, p, q)= p>b(t, x , u)+q>σ(t, x , u)−f (t, x , u),

(t, x , u, p, q) ∈ [0,T ]×Rn×U×Rn×Rn,
(4)

and (p(·), q(·)) is the solution to (2). In the above (3), the un-
known is again a pair of processes (P(·),Q(·)) ∈ L2

F(0,T ;Sn)×
L2
F(0,T ;Sn).
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• Let

H(t, x , u)
4
=H(t,x ,u,p(t),q(t))− 1

2σ(t,x(t),u(t))>P(t)σ(t,x(t),u(t))

+
1

2
tr
{[
σ(t, x , u)− σ(t, x(t), u(t))

]>
P(t)

·
[
σ(t, x , u)− σ(t, x(t), u(t))

]}
.

• Theorem 3.2. (Stochastic Maximum Principle) Let b, σ, f
and h are smooth enough. Let (x(·), u(·)) be an optimal pair
of Problem (S). Then

H(t, x(t), u(t)) = max
u∈U
H(t, x(t), u), a.e.t ∈ [0,T ], P-a.s.
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• There are two restrictions for the above stochastic maximum
principle:

• The filtration F = {Ft}t≥0 must be the natural filtration of
{W (t)}t≥0. This means that all the uncertainty comes from
the Brownian motion.

• It is for controlled stochastic ODEs. Can it be generalized to
controlled stochastic PDEs?
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• To achieve the above goal, we meet two main problems.

• To obtain the maximum principle for general filtration F, one
need to solve BSDEs on general filtration. In this case, the
Martingale Representation Theorem, which is a key point to
obtain the well-posedness of BSDEs by Pardoux and Peng, does
not hold.

• The work by N. El Karoui and S.-J. Huang (1997) shows that
one needs to introduce an extra corrected term to (8), and
therefore, it is even more difficult to “compute” the above Y (·).



Outline 1. Introduction 2. The classical transposition method in PDEs 3. Transposition solution to BSDEs 4. Well-posedness of vector-valued BSEEs 5. Well-posedness of operator-valued BSEEs 6. Some applications of the transposition solution

• To achieve the above goal, we meet two main problems.

• To obtain the maximum principle for general filtration F, one
need to solve BSDEs on general filtration. In this case, the
Martingale Representation Theorem, which is a key point to
obtain the well-posedness of BSDEs by Pardoux and Peng, does
not hold.

• The work by N. El Karoui and S.-J. Huang (1997) shows that
one needs to introduce an extra corrected term to (8), and
therefore, it is even more difficult to “compute” the above Y (·).



Outline 1. Introduction 2. The classical transposition method in PDEs 3. Transposition solution to BSDEs 4. Well-posedness of vector-valued BSEEs 5. Well-posedness of operator-valued BSEEs 6. Some applications of the transposition solution

• To achieve the above goal, we meet two main problems.

• To obtain the maximum principle for general filtration F, one
need to solve BSDEs on general filtration. In this case, the
Martingale Representation Theorem, which is a key point to
obtain the well-posedness of BSDEs by Pardoux and Peng, does
not hold.

• The work by N. El Karoui and S.-J. Huang (1997) shows that
one needs to introduce an extra corrected term to (8), and
therefore, it is even more difficult to “compute” the above Y (·).



Outline 1. Introduction 2. The classical transposition method in PDEs 3. Transposition solution to BSDEs 4. Well-posedness of vector-valued BSEEs 5. Well-posedness of operator-valued BSEEs 6. Some applications of the transposition solution

• Recently, by replacing Y (t)dw(t) in (8) by dM(t) (with M(·)
being a square-integrable martingale), G. Liang T. Lyons and Z.
Qian (2008) developed another approach for the well-posedness
of BSDEs with the general filtration.

• The advantage of this approach is that martingale representa-
tion theorem is not required, either. But the cost is that the
corrected term Y (·) in (8) is suppressed. Note that this term
plays a crucial role in some problems, say the Pontryagin-type
maximum principle for general stochastic optimal control prob-
lems. Also, the comparison theorem is not clear in this setting
because the usual duality analysis is not available.
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• For establishing maximum principle for controlled SDEs, we
only need to introduce two adjoint equations, a vector valued
BSDE and a matrix valued BSDE to deal with the first order
and second order terms, respectively.

• It does not make any really trouble once we know how to solve
vector backward SDEs, thanks to that a n × n-matrix can be
regarded as a vector in Rn×n.
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• One has to face a real challenge in the study of maximum prin-
ciple for controlled SPDEs. Indeed, in the infinite dimensional
setting, we should introduced an operator valued BSDE.

• Although the set of all bounded linear operators (with the op-
erator topology) is still a Banach space, it is not UMD.

• There exists no such a stochastic integration/evolution equa-
tion theory in general Banach spaces that can be employed to
treat such equations.
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• To overcome the two difficulties mentioned above, we give a
weaker but reasonable definition for the solution to vector val-
ued BSDE and the operator valued BSDE, motivated by the
transposition solution to partial differential equations with non-
homogeneous boundary condition, and prove the corresponding
well-posedness result.
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2. The classical transposition method in PDEs

• We now recall the main idea in the classical transposition method
to solve wave equation with non-homogeneous Dirichlet bound-
ary conditions.

• Consider the following wave equation:
ytt −∆y = 0 in Q ≡ (0,T )× G ,
y = u on Σ ≡ (0,T )× Γ,
y(0) = y0, yt(0) = y1 in G ,

(5)

where T > 0, G is a nonempty open bounded domain in Rd

(d ∈ N) with C 2 boundary Γ, (y0, y1) ∈ L2(G )× H−1(G ) and
u ∈ L2((0,T )× Γ).
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• When u ≡ 0, one can use the standard Semigroup Theory to
show the well-posedness of (5).

• When u 6≡ 0, one needs to use the transposition method. For
this purpose, for any f ∈ L1(0,T ; L2(Ω)) and g ∈ L1(0,T ;H1

0 (Ω)),
consider the following adjoint problem of (5):

ζtt −∆ζ = f + gt , in Q,
ζ = 0, on Σ,

ζ(T ) = ζt(T ) = 0, in G .
(6)

It is easy to show that the equation (6) admits a unique solution
ζ ∈ C ([0,T ]; H1

0 (G ))
⋂
C 1([0,T ]; L2(G )), which enjoys the

regularity ∂ζ
∂ν ∈ L2(Σ).
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• In order to give a reasonable definition for the solution to the
non-homogenous boundary problem (5) by the transposition
method, we consider first the case when y is sufficiently smooth.

• Assume g ∈ C∞0 ([0,T ];H1
0 (G )) and that y ∈ H2(Q) satisfies

(5). Then∫
Q
fydxdt −

∫
Q
gytdxdt

=

∫
G
ζ(0)y1dx −

∫
G
ζt(0)y0dx −

∫
Σ

∂ζ

∂ν
udΣ.

(7)
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• Note that (7) still makes sense even if the regularity of y is re-
laxed as y ∈ C ([0,T ]; L2(G ))

⋂
C 1([0,T ];H−1(G )). Because

of this, one introduces the following:

• Definition 1. We call y ∈ C ([0,T ]; L2(G ))
⋂
C 1([0,T ];H−1(G ))

a solution to (5), in the sense of transposition, if y(0) = y0,
yt(0) = y1, and for any f ∈ L1(0,T ; L2(G )) and any g ∈
L1(0,T ;H1

0 (G )), it holds that∫
Q
fydxdt −

∫ T

0
〈g , yt〉H1

0 (G),H−1(G)dt

= 〈ζ(0), y1〉H1
0 (G),H−1(G) +

∫
Ω
ζt(0)y0dx −

∫
Σ

∂ζ

∂ν
udΣ,

where ζ is the unique solution to (6).
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• One can show the well-posedness of (5) in the sense of trans-
position. The principle idea of this method is to interpret the
solution to one forward wave equation with non-homogeneous
Dirichlet boundary conditions in terms of another backward
wave equation with non-homogeneous source terms.

• The transposition method is a variant of duality method. Like
a mirror, it provides a way to see something which is not easy
to be detected directly.

• We shall use this idea to interpret BSDEs/BSEEs in terms of
SDEs/SEEs.
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3. Transposition solution to BSDEs

• Let (Ω,F ,F,P) be a complete filtered probability space with
F = {Ft}t∈[0,T ], on which a one dimensional standard Brown-
ian motion {W (t)}t∈[0,T ] is defined.

• Consider the following semilinear BSDE:{
dy(t) = f (t, y(t),Y (t))dt + Y (t)dW (t) in [0,T ],

y(T ) = yT ∈ L2
FT

(Ω;Rn),
(8)

where f (·, ·, ·) satisfies the usual Lipschitz condition and f (·, 0, 0) ∈
L2
F(Ω; L1(0,T ;Rn)).
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• Similar to the transposition method for non-homogeneous bound-
ary value problems, for fixed t ∈ [0,T ], we start from the fol-
lowing linear (forward) stochastic differential equation{

dz(τ) = u(τ)dτ + v(τ)dW (τ), τ ∈ (t,T ],

z(t) = η.
(9)

• It is clear that, for given u(·) ∈ L1
F(t,T ; L2(Ω;Rn)), v(·) ∈

L2
F(t,T ;Rn) and η ∈ L2

Ft
(Ω;Rn), equation (9) admits a unique

solution z(·) ∈ L2
F(Ω;C ([t,T ];Rn)).
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• Now, if equation (8) admits a classical solution (y(·),Y (·)) ∈
L2
F(Ω;C ([0,T ];Rn)) × L2

F(0,T ;Rn), then, applying Itô’s for-
mula to 〈z(t), y(t)〉, it follows

E〈z(T ), yT 〉 − E〈η, y(t)〉

= E
∫ T

t
〈z(τ), f (τ, y(τ),Y (τ))〉dτ

+E
∫ T

t
〈u(τ), y(τ)〉dτ + E

∫ T

t
〈v(τ),Y (τ)〉dτ.
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• This inspires us to introduce the following new notion for the
solution to the equation (8).

• Definition 2. We call (y(·),Y (·)) ∈ DF([0,T ]; L2(Ω;Rn)) ×
L2
F(0,T ;Rn) a transposition solution to the equation (8) if for

any t ∈ [0,T ], u(·) ∈ L1
F(t,T ; L2(Ω;Rn)), v(·) ∈ L2

F(t,T ;Rn)
and η ∈ L2

Ft
(Ω;Rn), it holds that

E〈z(T ), yT 〉 − E〈η, y(t)〉

= E
∫ T

t
〈z(τ), f (τ, y(τ),Y (τ))〉dτ

+E
∫ T

t
〈u(τ), y(τ)〉dτ + E

∫ T

t
〈v(τ),Y (τ)〉dτ.

(10)

• Clearly, any transposition solution to the equation (8) coincides
with its classical solution whenever the filtration F is natural one
generated by W (·).
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• The well-posedness of BSDEs in the sense of transposition
method is as follows

• Theorem 1. (Q. Lü and X. Zhang) For any given yT ∈
L2
FT

(Ω), the equation (8) admits a unique transposition solu-

tion (y(·),Y (·)) ∈ DF([0,T ]; L2(Ω;Rn)) × L2
F(0,T ;Rn). Fur-

thermore, there is a constant C > 0, depending only on K and
T , such that

|(y(·),Y (·))|DF([0,T ];L2(Ω;Rn))×L2
F(0,T ;Rn)

≤ C
[
|f (·, 0, 0)|L2

F(Ω;L1(0,T ;Rn)) + |yT |L2
FT

(Ω;Rn)

]
.

(11)

• Our method does not need the martingale representation the-
orem.
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4. Well-posedness of vector-valued BSEEs

• Consider the following vector-valued backward stochastic dif-
ferential equation:{

dy = −A∗ydt + f (t, y ,Y )dt + YdW (t) in [0,T ),

y(T ) = yT .
(12)

• To define the transposition solution to (12), we introduce the
following forward stochastic differential equation:{

dz = (Az + v1)dt + v2dW (t) in (t,T ],

z(t) = η.
(13)

Here v1(·) ∈ L1
F(t,T ; Lq(Ω;H)), v2(·) ∈ L2

F(t,T ; Lq(Ω;H)),
η ∈ LqFt

(Ω;H), and 1
p + 1

q = 1.
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• Definition 3. We call (y(·),Y (·)) ∈ DF([0,T ]; Lp(Ω;H)) ×
L2
F(0,T ; Lp(Ω;H)) a transposition solution to (12) if for any

t ∈ [0,T ], v1(·) ∈ L1
F(t,T ; Lq(Ω;H)), v2(·) ∈ L2

F(t,T ; Lq(Ω;H))
and η ∈ LqFt

(Ω;H), it holds that

E
〈
z(T ), yT

〉
H
− E

∫ T

t

〈
z(s), f (s, y(s),Y (s))

〉
H

= E
〈
η, y(t)

〉
H

+ E
∫ T

t

〈
v1(s), y(s)

〉
H
ds

+E
∫ T

t

〈
v2(s),Y (s)

〉
H
ds.
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• Theorem 3. (Q. Lü and X. Zhang) Let H be a Hilbert space.
For any yT ∈ LpFT

(Ω;H), and any f (·, ·, ·) : [0,T ]×H×H → H,
the equation (12) admits one and only one unique transposition
solution

(y(·),Y (·)) ∈ DF([0,T ]; Lp(Ω;H))× L2
F(0,T ; Lp(Ω;H)).

Furthermore, there is a constant C such that

|(y(·),Y (·))|DF([t,T ];Lp(Ω;H))×L2
F(t,T ;Lp(Ω;H))

≤ C
[
|f (·, 0, 0)|L1

F(t,T ;Lp(Ω;H)) + |yT |LpFT (Ω;H)

]
,

∀ t ∈ [0,T ].

(14)
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5. Well-posedness of operator-valued BSEEs

• Consider the following operator-valued backward stochastic evo-
lution equation:

dP = −(A∗ + J∗(t))Pdt − P(A + J(t))dt − K ∗PKdt

−(K ∗Q + QK )dt + Fdt + QdW (t) in [0,T ),

P(T ) = PT .
(15)

Here F ∈ L1
F(0,T ; L2(Ω;L(H))), PT ∈ L2

FT
(Ω;L(H)), and

J,K ∈ L4
F(0,T ; L∞(Ω;L(H))).
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• In order to define the transposition solution to the equation
(15), we introduce the following two stochastic differential equa-
tion:{

dx1 = (A+J)x1ds+ u1ds+Kx1dW (t) + v1dW (t) in (t,T ],

x1(t) = ξ1,{
dx2 = (A+J)x2ds+ u2ds+Kx2dW (t) + v2dW (t) in (t,T ],

x2(t) = ξ2.

Here ξ1, ξ2 ∈ L4
Ft

(Ω;H), u1, u2 ∈ L2
F(t,T ; L4(Ω;H)) and v1, v2 ∈

L4
F(t,T ; L4(Ω;H)).
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Definition 4. We call (P(·),Q(·)) ∈ DF,w ([0,T ]; L2(Ω;L(H))) ×
L2
F,w (0,T ; L2(Ω;L(H))) a transposition solution to (15) if for any

t ∈ [0,T ], ξ1, ξ2 ∈ L4
Ft

(Ω;H), u1(·), u2(·) ∈ L2
F(t,T ; L4(Ω;H)) and

v1(·), v2(·) ∈ L4
F(t,T ; L4(Ω;H)), it holds that

E
〈
PT x1(T ), x2(T )

〉
H
− E

∫ T

t

〈
F (s)x1(s), x2(s)

〉
H
ds

= E
〈
P(t)ξ1, ξ2

〉
H

+ E
∫ T

t

〈
P(s)u1(s), x2(s)

〉
H
ds

+E
∫ T

t

〈
P(s)x1(s), u2(s)

〉
H
ds + E

∫ T

t

〈
P(s)K (s)x1(s), v2(s)

〉
H
ds

+E
∫ T

t

〈
P(s)v1(s),Kx2(s)

〉
H
ds + E

∫ T

t

〈
P(s)v1(s), v2(s)

〉
H
ds

+E
∫ T

t

〈
Q(s)v1(s), x2(s)

〉
H
ds + E

∫ T

t

〈
Q(s)x1(s), v2(s)

〉
H
ds.
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• Denote by L2(H) the set of the Hilbert-Schmidt operators on
H.

• Theorem 4. (Q. Lü and X. Zhang) Assume that H is a sep-
arable Hilbert space and LpFT

(Ω) (1 ≤ p < ∞) is a separa-

ble Banach space. Then, for any PT ∈ L2
FT

(Ω;L2(H)), F ∈
L1
F(0,T ; L2(Ω;L2(H))) and J,K ∈ L4

F(0,T ; L∞(Ω;L(H))), the
equation (15) admits one and only one transposition solution
(P,Q) with the regularity

(
P(·),Q(·)

)
∈ DF([0,T ]; L2(Ω;L2(H)))×

L2
F(0,T ;L2(H)). Furthermore,

|(P,Q)|DF([0,T ];L2(Ω;L2(H)))×L2
F(0,T ;L2(H))

≤ C
[
|F |L1

F(0,T ;L2(Ω;L2(H))) + |PT |L2
FT

(Ω;L2(H))

]
.

(16)
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• Theorems 4 indicates that, in some sense, the transposition
solution introduced in Definition 4 is a reasonable notion for
the solution to (15).

• Unfortunately, we are unable to prove the existence of transpo-
sition solution to (15) in the general case.

• We shall introduced below a weaker version of solution, i.e.,
the relaxed transposition solution (to (15)), which looks awk-
ward but it suffices to establish the desired Pontryagin-type
stochastic maximum principle for optimal control of controlled
stochastic evolution equations.
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• Definition 5. We call
(
P(·),Q(·), Q̂(·)) a relaxed transposi-

tion solution to (15) if for any t ∈ [0,T ], ξ1, ξ2 ∈ L4
Ft

(Ω;H),
u1(·), u2(·) ∈ L2

F(t,T ; L4(Ω;H)) and v1(·), v2(·) ∈ L4
F(t,T ;

L4(Ω;H)), it holds that

E
〈
PT x1(T ), x2(T )

〉
H
− E

∫ T

t

〈
F (s)x1(s), x2(s)

〉
H
ds

= E
〈
P(t)ξ1, ξ2

〉
H

+ E
∫ T

t

〈
P(s)u1(s), x2(s)

〉
H
ds

+E
∫ T

t

〈
P(s)x1(s), u2(s)

〉
H
ds+E

∫ T

t

〈
P(s)K (s)x1(s),v2(s)

〉
H
ds

+E
∫ T

t

〈
P(s)v1(s),Kx2(s)

〉
H
ds+E

∫ T

t

〈
P(s)v1(s), v2(s)

〉
H
ds

+E
∫ T

t

〈
v1(s), Q̂(t)(ξ2,u2,v2)(s)

〉
H
ds

+E
∫ T

t

〈
Q(t)(ξ1, u1, v1)(s), v2(s)

〉
H
ds.
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• It is easy to see that, if
(
P(·),Q(·)

)
is a transposition solu-

tion to (15), then one can find a relaxed transposition solution(
P(·),Q(·), Q̂(·)) to the same equation (from

(
P(·),Q(·)

)
). In-

deed, they are related by

Q(s)x1(s) = Q(t)(ξ1, u1, v1)(s),

Q(s)∗x2(s) = Q̂(t)(ξ2, u2, v2)(s).

This means that, we know only the action of Q(s) (or Q(s)∗)
on the solution processes x1(s) (or x2(s)).

• However, it is unclear how to obtain a transposition solution(
P(·),Q(·)

)
to (15) by means of its relaxed transposition so-

lution
(
P(·),Q(·), Q̂(·)). It seems that this is possible but we

cannot do it at this moment.
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• Well-posedness result for the equation (15) in the general case.

• Theorem 5. (Q. Lü and X. Zhang) Assume that H is a sep-
arable Hilbert space, and LpFT

(Ω;C) (1 ≤ p < ∞) is a sep-

arable Banach space. Then, for any PT ∈ L2
FT

(Ω;L(H)),

F ∈ L1
F(0,T ; L2(Ω;L(H))) and J,K ∈ L4

F(0,T ; L∞(Ω;L(H))),
the equation (15) admits one and only one relaxed transposition
solution

(
P(·),Q(·), Q̂(·)). Furthermore,

||P||
L(L2

F(0,T ;L4(Ω;H)), L2
F(0,T ;L

4
3 (Ω;H)))

+ sup
t∈[0,T ]

∣∣∣∣(Q(t), Q̂(t)
)∣∣∣∣
X 2

≤ C
[
|F |L1

F(0,T ; L2(Ω;L(H))) + |PT |L2
FT

(Ω; L(H))

]
.

(17)
Here

X 4= L(L4
Ft

(Ω;H)× L2
F(t,T ; L4(Ω;H))× L2

F(t,T ; L4(Ω;H)),

L2
F(t,T ; L

4
3 (Ω;H)).
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6. Some applications of the transposition solution

• Solving control problem:

• Pontryagin maximum principle for controlled stochastic partial
differential equations.

• Second order necessary optimality condition.

• Application to SPDEs:

• Well-posedness of forward-backward stochastic partial differen-
tial equations.

• Study of the long time behavior of solutions to stochastic partial
differential equations.
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.

Thank you!
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